04. 振荡器

本文最后更新于 2024年12月18日 上午

振荡器

巴克豪森稳定性准则

反馈放大器在提升增益的同时降低了放大器的稳定性,可以利用反馈放大器在高增益下低稳定性的特点制作振荡器,使得输入的直流信号能够被振荡从而产生交流信号。
振荡器电路的框图如下:

要形成稳定的振荡波形,反馈电路中不能有外源输入存在,或者说外源输入对其无影响,反馈电路中的输入只来源于噪声,根据反馈的可知,当时可以满足这一条件。

假设放大增益为,反馈增益为,那么整个反馈系统的前馈增益为:
如果输入一个正弦噪声,那么下一时刻得到的噪声为:
要想使正弦噪声的波形稳定,那么需要使得前馈增益为1.

此外,反馈信号的相位和输入信号的相位相同,否则在叠加时产生的相移会使振荡不均匀。
因此,制造稳定振荡的两个条件:

  1. 对于反馈:

    • 时,每一次反馈都会加强信号,无法产生稳定的振荡波形:

    • 时,每一次反馈都会削弱信号,无法产生稳定的振荡波形:

    • 时,每一次的反馈信号和输入信号相同,可以产生稳定的振荡波形:
  2. ,反馈信号的相位与放大电路输入信号的相位相同。

    • 对于正反馈放大器,其反馈信号的相位和输入信号的相位相同。
    • 对于负反馈放大器,反馈信号的相位和输入信号的相位相差180°,因此需要人为添加相移器对相移进行复位。

这两个条件称为巴克豪森稳定性准则。满足这两个条件的反馈电路才可以产生稳定的正弦波。

文氏电桥振荡器

由于正反馈放大器可以带来振荡,负反馈放大器可以带来稳定性,文氏电桥振荡器结合了上述两种反馈放大器的优点,其电路如图所示:

文氏电桥振荡器的 正相输入端连接的是一个由RC组成的带通滤波器电路,与正相输入端构成振荡电路,产生振荡。 其中带通滤波器的电路如下图所示:

这个带通滤波器的作用是选择特定频率的信号传入正反馈放大器,从而产生振荡。
其频率响应特性曲线如下图所示:

可以发现,当信号频率为:
时,带通滤波器的相移为0,满足条件2。
文氏电桥的输出与放大器的同相输入端相连,此时放大器可以看做是一个同相放大器。
通过数学计算可以发现,这个结果取决于同相放大器的电压增益,当电压增益时才能满足这一条件。

这一部分的数学推导:https://blog.csdn.net/weixin_43996900/article/details/106189102

同时放大器的反相输入端可视为一个反相放大器,以负反馈确保电路输出稳定。

相移振荡器

由于负反馈放大器本身可以满足的条件,另一种满足相移条件的方式是将负反馈放大器连接到相移器电路上,当相移器能够实现信号相移180°时即可使电路输出稳定的正弦波。

相移器

相移器通过高通滤波器的并联实现,根据高通滤波器的频率响应关系和相移公式可知,每个相移器的相移为:
通过调整电路中RC的值即可使其在输入信号频率固定的情况下产生特定的相移。
当高通滤波器并联时,要使相移平均到高通滤波器,有如下公式:
其中代表高通滤波器的个数,它与相移之间满足如下关系: 需要注意的是,的值越大,所需要的器件越多,同时由于每个高通滤波器在处的增益都小于0,对所连接的运算放大器电压增益的要求也更高:运算放大器的电压增益需要大于所有高通滤波器在的增益之和,该电路才能正常工作。通常认为
同时,根据高通滤波器的相频响应图可知,二阶90°相移器的无限趋近于0,不具有实用性。

松弛振荡器

松弛振荡器电路如图所示:

其反相输入端可以看做是一个振荡电路,通过电容的充放电可以产生三角波,而同相输入端可以看做是一个同相放大器。
当所有电阻阻值、所有电容阻值都相等时,有电路的谐振频率:


04. 振荡器
https://l61012345.top/2021/10/17/学习笔记/电子系统/4. Osillator/
作者
Oreki Kigiha
发布于
2021年10月17日
更新于
2024年12月18日
许可协议